机器视觉系统的应用2022-06-15 10:00
随着时代的发展,有不少学科的研究目标与机器视觉相近或者相关,这些学科中包括图像处理、模式识别或图像识别、图像理解等。由于历史发展或领域本身的特点,这些学科有某种程度的相互重叠。但是,机器视觉与其他学科又有着一定的区别,其特点是:
一、综合技术 机器视觉是一项综合技术,其中包括数字图像处理技术、机械工程技术、控制技术、电光源照明技术、光学成像技术、传感器技术、模拟与数字视频技术、计算机软硬件技术、人机接口技术等。这些技术在机器视觉中是并列关系,相互协调应用才能构成一个成功的工业机器视觉应用系统 二、强调工业可靠性 机器视觉强调工业现场环境下的可靠性,要求能够适应工业生产中恶劣的环境,有较高的容错能力和安全性,不会破坏工业产品。 三、强调实用性 机器视觉强调实用性,要求有合理的性价比,要有通用的工业接口,能够由普通工作来操作,有较强的通用性和可移植性。 四、要求高速度和高精度 由于机器视觉通常要求高速度和高精度,数字图像处理中的许多新算法目前还难以应用。因此,机器视觉技术在工业生产中的实际应用速度远远滞后于图像处理理论的发展速度。 机器视觉是将图像处理、计算机图形学、模式识别、计算机技术、人工智能等众多学科高度集成和有机结合,而形成的一门综合性的技术。一般地说,机器视觉是研究计算机或其他处理器模拟生物宏观视觉功能的科学和技术,也就是用机器代替人眼来做测量和判断。机器视觉是将图像处理、计算机图形学、模式识别、计算机技术、人工智能等众多学科高度集成和有机结合,而形成的一门综合性的技术。一般地说,机器视觉是研究计算机或其他处理器模拟生物宏观视觉功能的科学和技术,也就是用机器代替人眼来做测量和判断。 3D测量技术的应用,会越来越广泛。以手机制造为例,一般手机玻璃盖板在加工制作过程中需要经过开料、CNC、抛光、钢化、超声波清洗、真空镀膜、丝印等一系列特殊加工工艺制作而成的产品。它是贴合在触摸屏表层作为保护屏幕和美化产品的作用。因此产品表面缺陷检测都需要很高的检测精度和可靠的打光效果来做保证。手机屏幕边缘的缝隙大小,以及机身面是否平整,都需要应用3D视觉技术。这一切缘由,皆因消费水平的提升,因此商家会更多的应用3D技术,提高产品的工艺水平 机器视觉是一项综合性技术,包括图像处理、机械工程技术、控制、电光源照明、光学成像、传感器、模拟与数字视频技术、计算机软硬件等。其功能在于生产部件、产品的定位,以及产品的检测和外观识别。瑕疵检测是视觉技术难的部分,传统的瑕疵检测,基于模板和特定的过程学习后,对产品进行判断。但是产品的瑕疵不确定因素很多,这种传统的做法,很难真正意义上实现瑕疵检测。以消费类电子产品为例,许多厂商zui终的产品出厂检测,往往耗费大量人力。所以,视觉技术借助人工智能,通过深度学习的算法,为瑕疵检测赋能,并在多个行业得到应用。 机器视觉系统的组成→相机、图片、主机、光源、场景等,有照明部分、图像获取部分、图像显示部分和图像处理部分。一般采用CCD摄像头摄取检测图像并转化为数字信号,再对图像数字信号进行处理,从而得到所需要的各种目标图像特征值,并由此实现模式识别、坐标计算、灰度分布图等多种功能。然后再根据其结果显示图像,输出数据,发出指令,配合执行机构完成位置调整,好坏筛选,数据统计等自动化流程 上一篇: 了解更多机器视觉的特点
下一篇: 机器视觉检测有效分拣产品的缺陷
|