什么是机器视觉检测?视觉检测技术的应用与优势?2023-02-16 09:12
一、机器视觉系统
其应用范围随着工业自动化的发展逐渐完善和推广,其中母子图像传感器、CMOS和CCD摄像机、DSP、ARM嵌入式技术、图像处理和模式识别等技术的快速发展,有力地推动了机器视觉的发展。 机器视觉是一种比较复杂的系统。因为大多数系统监控对象都是运动物体,系统与运动物体的匹配和协调动作尤为重要,所以给系统各部分的动作时间和处理速度带来了严格的要求。 工业机器视觉系统的工作过程主要如下: 1、当传感器探测到被检测物体接近运动至摄像机的拍摄中心,将触发脉冲发送给图像采集卡; 二、机器视觉相关技术 1、图像采集技术——机器视觉的基础 照明是影响机器视觉系统输入的重要因素,其直接影响输入数据的质量和应用效果。到目前为止,还未有哪种机器视觉照明设备能通用各种应用,因此在实际应用中,需针对应用选择相应的照明设备以满足特定需求。 光学摄像头的任务就是进行光学成像,一般在测量领域都又专门的用于测量的摄像镜头,因为其对成像质量有着关键性的作用。 CCD( Charge Coupled Device) 摄像机及图像采集卡共同完成对目标图像的采集与数字化。目前 CCD,CMOS等固体器件的应用技术,线阵图型敏感器件,像元尺寸不断减小,阵列像元数量不断增加,像元电荷传输速率也得到大幅提高。 用于机器视觉的图像处理与分析方法的核心是,解决目标的检测识别问题。当所需要识别的目标比较复杂时,就需要通过几个环节,从不同的侧面综合来实现。 对目标进行识别提取的时候,首先是要考虑如何自动地将目标物从背景中分离出来。目标物提取的复杂性一般就在于目标物与非目标物的特征差异不是很大,在确定了目标提取方案后,就需要对目标特征进行增强。 随着计算机技术、微电子技术以及大规模集成电路的发展,图像信息处理工作越来越多地借助硬件完成,如 DSP 芯片、专用的图像信号处理卡等。 软件部分主要用来完成算法中并不成熟又较复杂或需不断完善改进的部分。这一方面提高了系统的实时性,同时又降低了系统的复杂度。 三、机器视觉的应用与优势1、机器视觉技术的应用范围
自动视觉识别检测目前已经用于产品外形和表面缺陷检验,如木材加工检测、金属表面视觉检测、二极管基片检查、印刷电路板缺陷检查、焊缝缺陷自动识别等。 这些检测识别系统属于二维机器视觉,技术已经较为成熟,其基本流程是用一个摄像机获取图像,对所获取的图像进行处理及模式识别,检测出所需的内容。
机器视觉主要用于医学辅助诊断。首先采集核磁共振、超声波、激光、X射线、γ射线等对人体检查记录的图像,再利用数字图像处理技术、信息融合技术对这些医学图像进行分析、描述和识别,最后得出相关信息,对辅助医生诊断人体病源大小、形状和异常,并进行有效治疗发挥了重要的作用。
智能交通监控领域中,在重要的十字路口安放摄像头,就可以利用摄像头的快速拍照功能,实现对违章、逆行等车牌的车牌进行自动识别、存贮,以便相关的工作人员进行查看。 人工检测法和桥检车法都是依靠人工用肉眼对桥梁表面进行检测,其速度慢,效率低,漏检率高,实时性差,影响交通,存在安全隐患,很难大幅应用; 无损检测包括激光检测、超声波检测以及声发射检测等多种检测技术,它们仪器昂贵,测量范围小,不能满足日益发展的桥梁检测要求; 智能化检测有基于导电性材料的混凝土裂缝分布式自动检测系统和智能混凝土技术,也有最前沿的基于机器视觉的检测方法。 导电性材料技术虽然使用方便,设备简单,成本低廉,但是均需要事先在混凝土结构上涂刷或者埋设导电性材料进行检测,而且智能混凝土技术还无法确定裂缝位置、裂缝宽度等一系列问题距实用化还有较长的距离; 而基于机器视觉的检测方法是利用CCD相机获取桥梁表观图片,然后运用计算机处理后自动识别出裂缝图像,并从背景中分离出来然后进行裂缝参数的计算的方法,它具有便捷、直观、精确、非接触、再现性好、适应性强、灵活性高、成本低廉的优点,能解放劳动力,排除人为干扰,具有很好的应用前景。 据统计,混凝土桥梁的损坏有90%以上都是由裂缝引起的,因此对桥梁的健康检测主要是对桥梁表观的裂缝进行检测与测量。 基于机器视觉的桥梁检测技术主要包括三部分内容:桥梁表观图像的获取技术、基于图像的裂缝自动识别理论与算法以及基于图像的裂缝宽度等病害程度定量化测量方法。 基于机器视觉的自动化、智能化检测技术已经在道路、隧道上得到了成功应用,在桥梁上也得到了初步的应用,但主要集中在视线开阔的高空混凝土构件表观图像获取技术上,在病害的自动识别方面仍停留在理论研究阶段,还无法应用于实际工程当中。 针对量大面广的混凝土梁体,智能化视频桥梁检测车进入理论与关键部件模型的研制阶段,但是受到桥梁细小裂缝自动识别与清晰图像快速化获取难度大的限制,目前离达到实用化程度的要求还相距甚远。 2、机器视觉技术的优势 针对量大面广的混凝土梁体 四、机器视觉未来发展趋势机器视觉可以说是人工智能的最下层的基础设施层, 在人工智能产业行业应用最主要几个应用领域中,机器视觉的应用领域非常深、非常多,从整个产业链的全景图来讲,中国的人工智能产业处在快速的生态的构建期。 从整个机器视觉的领域来讲,它是处在快速的重构期,通过市场分析来看,机器视觉并不是特别新兴的领域,这从最早图像处理衍生到现在,市场上有很多大的厂商对智能安防和交通做了很久的深耕,他们最开始不是做机器视觉、人脸识别起家的,在这几个行业中很多厂商都处于并驾齐驱、快速发展阶段。 2018年中国人工智能市场规模会超过406亿,这个复合增长率会达到25.8%,增速是快于全球的整个增长率的。在市场结构上来讲,也是存在着整体的情况。投资规模来讲,在去年一年,从投资的整个额度包括投资笔数都呈快速增加的态势,而且很多从事人工智能和机器视觉的企业数量也在快速地增加。 未来,通过人工智能方面利好的政策,在这四个领域会有比较大的机遇,安防、交通,金融,消费电子这是机器视觉领域重点关注的应用行业方向。 第一是现在巨头做机器视觉,包括人工智能演进,他们都是呈开元化,这在中国来讲比如华为,对他们来说开源的思路,到底开源怎么用,有很多理念上跟国外还是有一定的差距,很多开源做完代码自己封装自己用了,其实从整个思路来讲,国外开源理念上是更先进的。当然有其背后的原因,很多企业基本上在提交人工智能代码上走着开源化部署道路。 整个产业的演进方向,目前处在快速回报期。整个产业和产品技术演进会存在周期的波动,机器视觉领域以及计算机视觉,仍是处在快速的回报期,也就是说它的技术已经得到成熟,市场关注度也在快速地回升,它是未来能够得到快速回报的重点产品和领域。 最后就是在目前中国整个市场发展,包括政府的规划中,智慧城市这个话题又重新火热起来了,很多年前建设了很多,但是发展都不是特别顺利,现在随着人工智能整个产业发展,这个动力和热潮,主要原因就是技术实力能够解决真正的刚需和真正的问题,在数据方面我们预测今年中国智慧城市建设数量超过500个,在整个智慧城市的产业定义上来讲,机器视觉领域需求量特别大的,很多的包括智慧城市的定义就是说,什么叫智慧城市,就是摄象头数量多少个,这是一个很刚性的标准,对智能,包括具备人脸识别功能摄象头需求量未来是非常大的。 本文来源于网络! 上一篇: 影响机器视觉检测系统因素分析
下一篇: 机器视觉技术在各行业的应用
|