机器视觉的简单介绍2022-08-04 16:34
机器视觉是一个已有很久历史了,但它是一个朝阳产业。 通过它与自动化相结合,可以为企业产生价值。 首先,介绍一下机器视觉的工作过程,如下: —— 机器视觉的认识 —— 一般地说,机器视觉就是用机器代替人眼来做测量和判断。首先采用CCD照相机将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,如:面积、长度、数量、位置等;后,根据预设的容许度和其他条件输出结果,如:尺寸、角度、偏移量、个数、合格/不合格、有/无等。机器视觉的特点是自动化、客观、非接触和高精度,与一般意义上的图像处理系统相比,机器视觉强调的是精度和速度,以及工业现场环境下的可靠性。 机器视觉极适用于大批量生产过程中的测量、检查和辨识,如:零件装配完整性,装配尺寸精度,零件加工精度,位置/角度测量,零件识别,特性/字符识别等。其应用行业为:汽车,制药,电子与电气,制造,包装/食品/饮料,医学。如对汽车仪表盘加工精度的检查,高速贴片机上对电子元件的快速定位,对管脚数目的检查,对IC表面印字符的辨识,胶囊生产中对胶囊壁厚和外观缺陷的检查,轴承生产中对滚珠数量和破损情况的检查,食品包装上面对生产日期的辨识,对标签贴放位置的检查。工业专家们预言:在未来的20年到50年,机器视觉将成为横跨所有行业的通用性技术,几乎所有出产的产品都会由机器视觉系统来检测。 在现代工业自动化生产中,涉及到各种各样的检查、测量和零件识别应用,例如汽车零配件尺寸检查和自动装配的完整性检查,电子装配线的元件自动定位,饮料瓶盖的印刷质量检查,产品包装上的条码和字符识别等。这类应用的共同特点是连续大批量生产、对外观质量的要求非常高。通常这种带有高度重复性和智能性的工作只能由人工检测来完成,我们经常在一些工厂的现代化流水线后面看到数以百计甚至逾千的检测工人来执行这道工序,在给工厂增加巨大的人工成本和管理成本的同时,仍然不能保证100%的检验合格率(即“零缺陷”),而当今企业之间的竞争,已经不允许哪怕是0.1%的缺陷存在。有些时候,如微小尺寸的快速测量,形状匹配,颜色辨识等,用人眼根本无法连续稳定地进行,其它物理量传感器也难有用武之地。这时,人们开始考虑把计算机的快速性、可靠性、结果的可重复性,与人类视觉的高度智能化和抽象能力相结合,由此产生了机器视觉的概念。 “机器视觉”,即采用机器代替人眼来做测量和判断。 以计算器进行图像处理,改善图像品质的有效应用开始于1964年美国喷射推进实验室(J.P.L)用计算机对宇宙飞船发回的大批月球照片进行处理,获得显著的效果。 1970至1980年代由于离散数学的创立和完善,使数字图像处理技术得到了迅速的发展,随着电脑的功能日益增强,价格日益低廉,使得图像处理在各行各业的应用已经成为相当普遍的工具之一,举凡在医学工程、工业应用、交通领域应用等。1980年代开始,有关交通量估测的研究渐渐有了成果。到1985年以后,各国对于交通图像侦测系统已有实际的成品发展出来。另外,近年来结合类神经网络加速图像处理速度形成一个研究趋势。 在进入图像处理之前,我们首先对图像做一个概略性的探讨。所谓“图像”泛指所有实际存在含有某种消息的信号,如含有人、事、物等的照片,而红外线摄影所获得的信号,则表示某些物体的温度分布。 我们常说“一幅图胜过千言万语”,即是指每张图像中含有许多的信息,根据我们的目的而进行处理,得出想要的结果。“数字图像”是将传统照片或录像带模拟讯号经取样(sample)及数字化后达成。数字化的原因在于方便计算机运算与储存。所储存的亮点成为图像的基本单位,称为象素(Pixel)。象素的亮度以灰度值(Gray-level)表示,灰度值被划分为256阶,暗为0,亮为255。一张图像被数值化成方块格子所组成的画像元素,每一格子中都标有一对坐标,一个代表其行值,另一则代表其列值。行值从这张图像的左边开始标帜自0一直到n,n表示行值中大值。相同的,列值从上方起定为0,往下移动至m值,m表示图像全部列数。 所谓图像处理就是为了某种目的对图像的强度(灰度值)分布视为一连串整数值的集合,经由不断的运算执行某些特定的加工和分析。 上一篇: 机器视觉车辆特征识别有哪些技术优势
下一篇: 机器视觉技术推动工业自动化
|